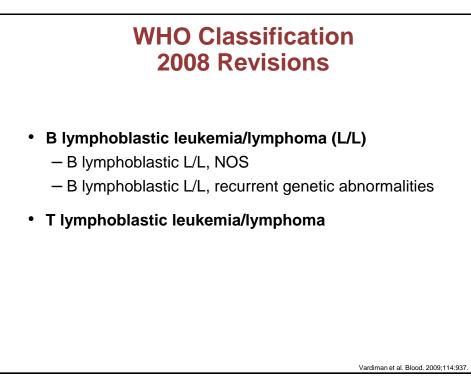
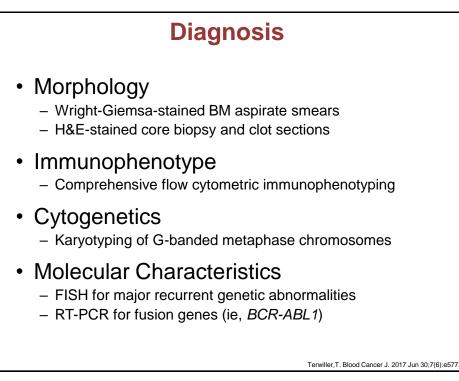
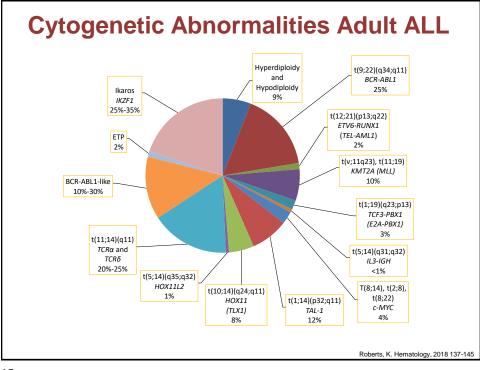

EPIDEMIOLOGY

Est	Estimated Incidence of ALL in 2024							
		New Cases	6	550				
	Deaths		1	1330				
	Age Group			5-year C Surviva				
	Pedia	tric (< 18 yo)		89%				
	Adults and young adolescents (19-39 yo)			61%				
	Adults	s (40-60 yo)		40%				
	Elderl	y adults (> 60 yo)		209	%			
				1] American Cancer S ast accessed October		cts and Figures 2018.		

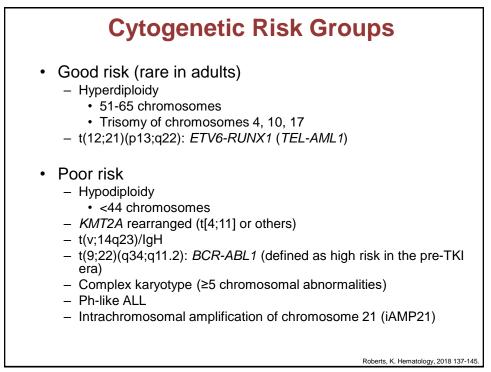

ALL Statistics	
	Incidence per 1,000,000 person-years
Peak age of 1-4 years	78.7
Nadir age of 40 – 59 years	8.1
Race	
Hispanic	24.9
Non-Hispanic White	16.6
Asian and Pacific Islanders	14.8
Black	10.2
7	Dores et al. <i>Blood</i> . 2012;119:34-43.

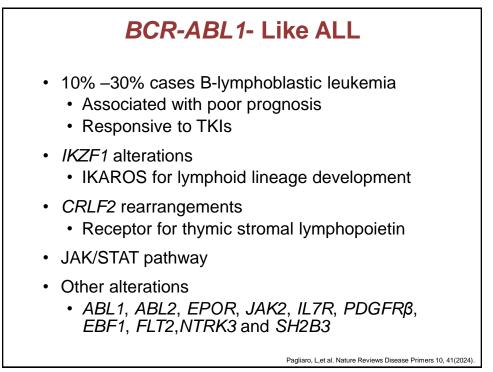


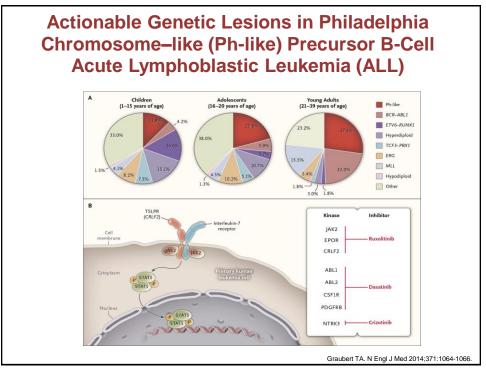

DIAGNOSIS

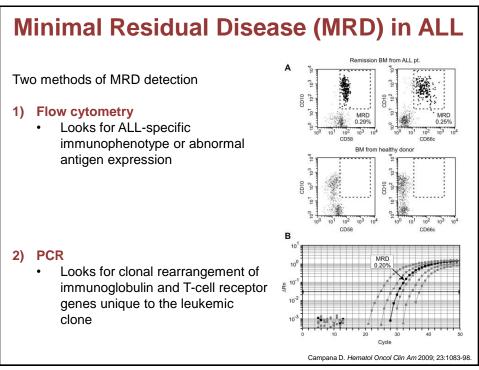
Diagnostic Work-Up

- Bone marrow biopsy with:
 - Cytogenetics
 - Flow Cytometry
 - FISH for major recurrent abnormalities
 - PCR testing for BCR-ABL if t(9;22) is suspected
- · Lumbar puncture to assess CSF
 - Usually not done while circulating blasts are present
- Testicular exam
 - Especially in T-cell ALL

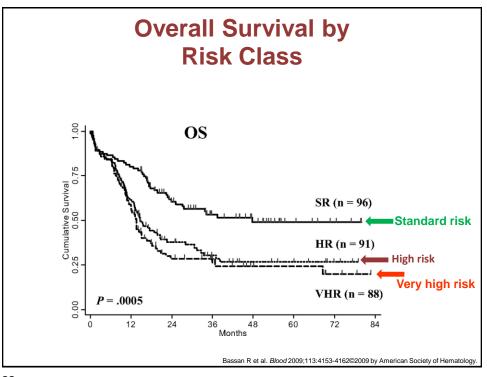


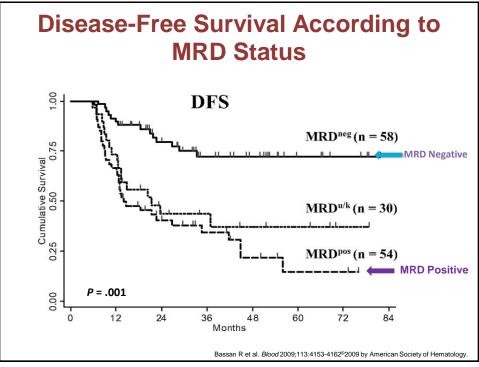



Key Genetic Alterations in ALL


ALL subtype	Alterations/Mutations
T-lineage	PHF6, CNOT3, RPL5, RPL10, Notch/FBXW7
ЕТР	Loss of function (GATA3, IKZF1, RUNX1, ETV6) Gain of function (Ras, FLT-3, IL7R) Inactivating (EZH2, SUZ12, EED, SETD2, DNMT3A)
3CR-ABL1-like	Rearrangement CRLF2 in 50%; activating JAK mutations in 50% CRLF2r Rearrangement kinase genes ABL1, ABL2, EPOR, PDGFRB
Hypodiploid	Ras (NF1, PTPN11, NRAS, KRAS) IKZF2/IKZF2 TP53, commonly germline
Burkitt	TCF3/ID3 , CCND
Relapsed	CREBBP , NT5C2 enriched
amilial	TP53 low hypodiploid; PAX5 pGly193Ser in autosomal dominant
Ph+	IKZF1 deletion

Mullighan et al. Blood. 2013;122:3899

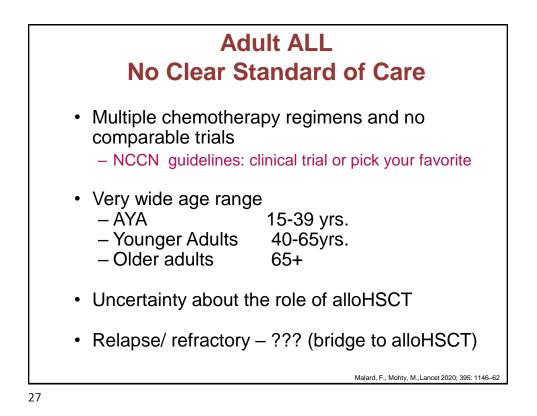


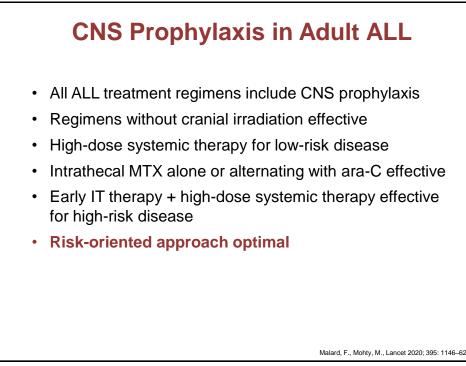

RISK STRATIFICATION AND PROGNOSTIC FACTORS

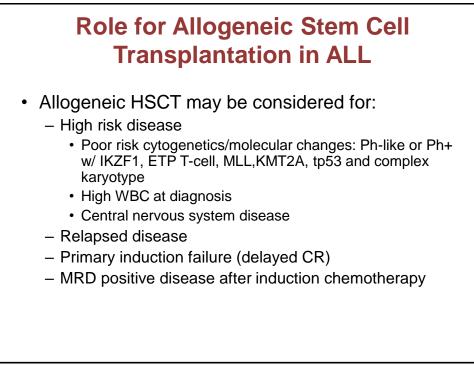
21

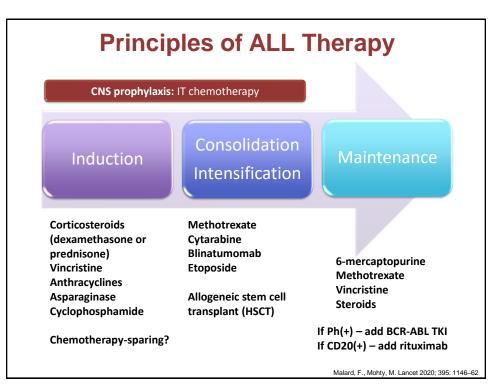
Adult ALL Risk Categories

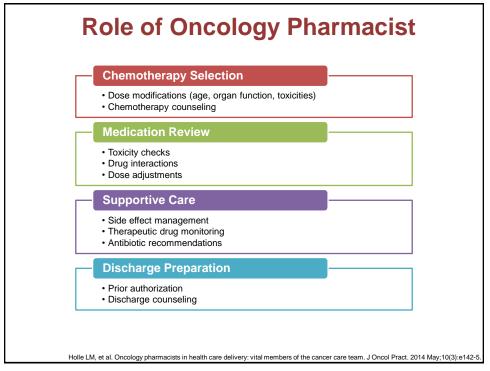
Prognostic factors	Standard Risk	Adverse Risk
Age	≤ 35 years old	>60 years old
WBC at diagnosis	<30K	>100K
Immunophenotype	Precursor B-cell	Early/mature T-cell
Cytogenetics		t(9;22)/BCR-ABL1, t(4;11), Hypodiploid <44, t(1;19) Complex (≥ 3 abnormalities)
Mutations		IKZF1
Minimal residual disease after induction	<0.01%	≥ 1%
Time to CR1	≤ 4 weeks	> 4 weeks
Cycles to obtain CR	1 cycle	> 1 cycle



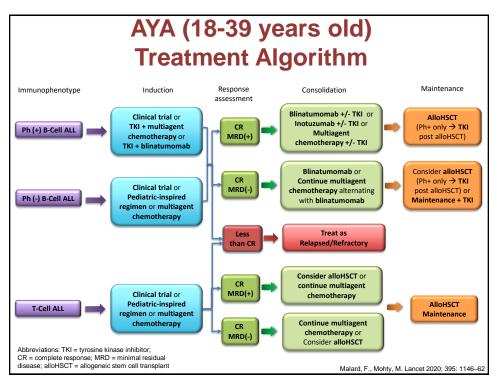



Factors Affecting Treatment Decisions


- Age
- Comorbidities
 - Liver disease, transaminitis, or high bilirubin
 - Congestive heart failure
 - Neuropathy
- Immunophenotype and risk stratification
- BCR-ABL
- Time point and cutoff for minimal residual disease (MRD) will be dependent on the induction regimen used



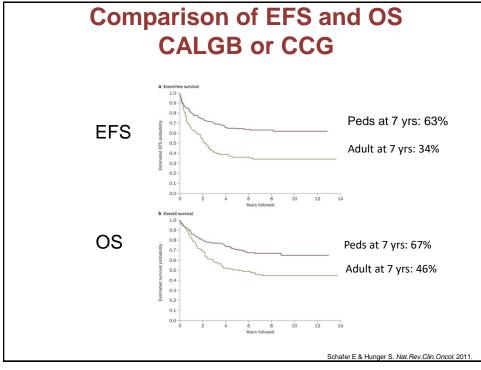




ALL Therapy "Personalized Therapy"

Entity	Management
Burkitt	HCVAD-R x 8; ITx16; Rituximab+brief high-intensity chemo with filgrastim
Ph-positive ALL	HCVAD + TKI; TKI maintenance; allo SCT in CR1
T-ALL	HD CTX, HD ara-C, Asp; nelarabine?
CD20 – positive ALL	ALL chemo Rx+ rituximab
AYA	Pediatric-inspired therapy; HCVAD-R
MRD by FCM	Prognosis; need for allo SCT in CR1

Malard, F., Mohty, M. Lancet 2020; 395: 1146-62

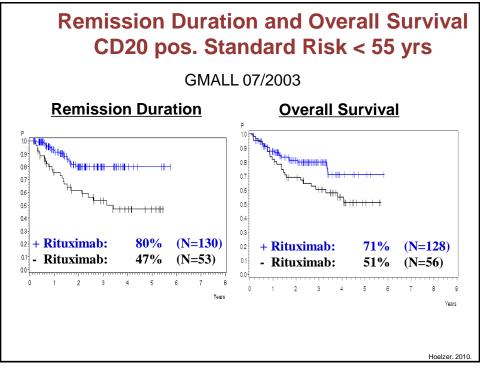


Adolescents & Young Adults with ALL

Country	Regimen	Age	No.	%CR	% 5-yr EFS
U.S.	CCG CALGB	16 — 21	196 103	96 93	64 38
France	FRALLE 93 LALA94	15 — 20	77 100	94 83	67 41
Holland	DGOG HVON	15 — 18	47 44	98 91	69 34
UK	ALL97 UKALLXII	15 — 17	61 67	98 94	65 49
Italy	AIEOP Gimema	14 — 18	150 95	94 89	80* 71*

*2-yr event-free survival (EFS)

Stock et al. Blood. 2008;112:1646-54; Boissel et al. J Clin Oncol. 2003;21:774-80; de Bont et al. Leukemia 2004;18:2032-2035; Testi et al. Blood. 2004;104:1954a; Ramanujachar et al. Cancer. 2006;48:254-61.



- Treatment team?
- Clinical trials?
- Treatment?

Allogeneic Stem Cell Transplantation MRC/ECOG UKALLXII/E2993 Trial Ph- Negative ALL

	Overall	survival	Rel	apse	Non relapse death	
	Donor	No donor	Donor	No donor	Donor	No donor
High risk	41%	35% 37%		63%	36%	14%
0	Ν	S	P<0	.0005	P<	0.05
	62%	52%	24%	49%	20%	7%
Standard risk	P<(0.02	P<	0.05	P<	0.05
High risk	any of :	Age	≥ 35 y	ears		
		WBC	> 30,0	00/μL (<i>B L</i>	_ineage))
		:	> 100,0	000/μL (<i>T</i>	Lineage))
	Time	to CR	> 4 we	eks	Goldstone	e Blood. 2008;111:18

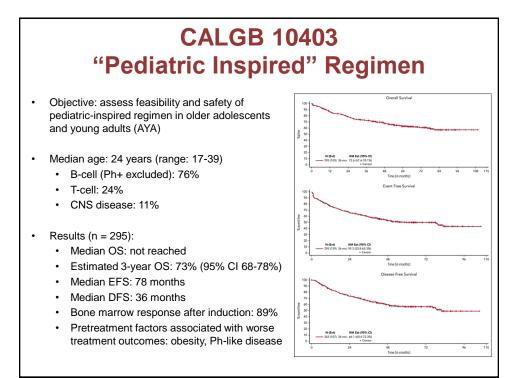
	Childhood vs Adult ALL: Disease Biology					
Child	lren Adu	lts				
Peak incidence 5 yea	rs of age 50 y	ears of age				
% of all leukemias 80-85	5% 5%					
T cell 10-15	5% 20-2	5%				
Mature B cell 1-2%	3-5%	6				
Ph positive ALL 3%	20-3	0%				

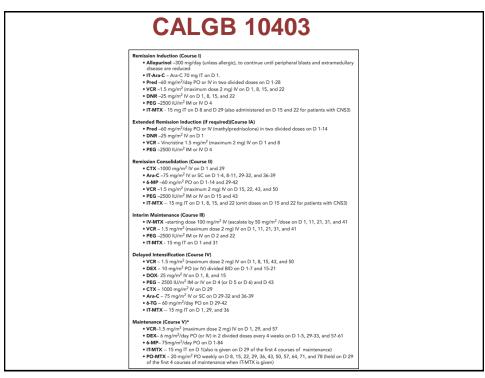
Sallan SE, et al. Haematology 2006; 128-132.

Asparaginase Intensification Pediatric and Pediatric-"Inspired" Regimens

	Asparaginase	Upper age	OS @ 3-7 yrs.
True Pediatric			
DFCI ¹	E. Coli	50	74%
CALGB 10403	Pegaspargase 2,5000	39	73%
Pediatric "Inspired"			
PETHEMA ²	E. Coli	30	69%
GRAALL-2003 ³	E. Coli	45/60	64%/47%
USC ⁴	Pegaspargase 2,000	57	58%
Princess Margaret ⁵	E. Coli (retrospective)	60	65%
Asparaginase Intensificati	on		
GMALL 7/03 ⁶	PEG 500/1000 → 2,000	55	67%
	¹ DeAngelo ASH 2007; ² Ribera JCO 2008; Ab abstract # 1495; Storring J, ⁵ Br J Haematol. 20		

41

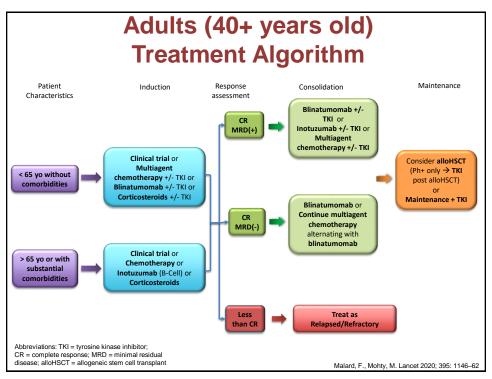



Objective: Compare ABFM and A. Overall Survival by WBC B. Complete Remission Duration by WBC hyper-CVAD treatment in AYA patients surviva 0.6 0.6 85 patients (ages 12-40) raction 0.4 0.4 CRD 1 with Ph-negative ALL received ABFM regimen 71 historic AYA patients with Years ALL who received hyper-C. Overall Survival by Protocol D. Complete Remission Duration by Protocol **CVAD** regimen Patient and disease urviva 0.6 0.6 characteristics, as well as MRD 0.4 0.4 status, were analyzed for their RD impact on outcomes Cancer. 2014 Dec 1; 120(23): 3660-3668. Published online 2014 Jul 17

Augmented Berlin-Frankfurt-Münster Therapy in Adolescents and Young Adults With Acute Lymphoblastic Leukemia

- ABFM tolerable in AYA patients with ALL, but not associated with significant improvements in CRD or OS
- Shift to pediatric-based therapy for AYA patients with ALL (notably those ≥ 21 years) may need further assessment
- The toxicity profiles between the two groups differed significantly
- High WBC count at baseline remained an independent predictor of OS in multivariate analysis

Cancer. 2014 Dec 1; 120(23): 3660-3668. Published online 2014 Jul 17.



Asparaginase						
– A a Dosii	cid depletic re spared th ng & Admi	olyzing serum asparagii n. Normal cells can syn ne cytotoxic effects.	ne, inhibiting protein synthesis thesize their own asparagine a t) or intramuscularly	0		
	edication	Bacterial Origin	Dosing & Frequency	Half-Life		
Peg	aspargase ncospar®)	E. Coli	 < 21 yo: 2500 units/m2 > 21 yo: 2000 units/m2 ~ every 2 weeks or per protocol 	5.5-7 days		
	aspargase .sparlas®)	E. Coli	2500 units/m2 ~ every 3 weeks or per protocol	16 days		
rec	Erwinia combinant paraginase Rylaze®)	Pseudomonas fluorescence engineered Erwinia chrysanthemi	25 mg/m2 q48 hours OR 25 mg/m2 Mon & Wed, and 50 mg/m2 Fri	16 hours		

Asparaginase Toxicities & Monitoring

- · Hypersensitivity reactions
 - Infusion reactions vs anaphylaxis
 - Silent antibodies
- Hepatotoxicity: AST, ALT, bilirubin
- · Pancreatitis: amylase, lipase, triglycerides
- · Coagulopathy (venous thromboembolic events > bleeding): platelets
- Myelosuppression: CBC
- · Minimal nausea/vomiting, diarrhea
- Glucose intolerance: blood glucose, A1c
- · Fatigue and malaise

Regimen (NCCN Guidelines 2024)	Ph (+) B-ALL	Ph (-) B-ALL	T-Cell	AYA (High Intensity)	Adults (Moderate- High Intensity)	Elderly (Low Intensity)
TKI + Blinatumomab	X (+ TKI)			х	х	х
CALGB 10701	X (+ TKI)			х	х	х
Dose-adjusted HyperCVAD	X (+ TKI)	х	х	х	х	X ("mini")
EsPhALL	X (+ TKI)			х		
Corticosteroid +/- vincristine	X (+ TKI)	х	х	х	х	х
EWALL	X (+ TKI)	х				х
CALGB 10403		х	х	х		
DFCI ALL (based on 00-01)		х	х	х		
PETHEMA-ALL		х	х	х		
Dose-adjusted CALGB 8811 Larson		х	х		х	
Inotuzumab ozogamicin + miniCVD		х			х	х
MRC UKALLXII/ECOG 2993		х	х		х	
ECOG 1910		х		х	х	х
GRAALL-2005		х	х	х	х	
USC/MSKCC ALL (CCG-1882 based)		х	х	х	х	
Linker 4-drug regimen		х	х	х	х	
AALOLD07		х	х			х
GMAALL		х	х			х
DFCI 91-01		х	х			х
CALGB 9111		х	х			х
COG AALL 0434			х	х		

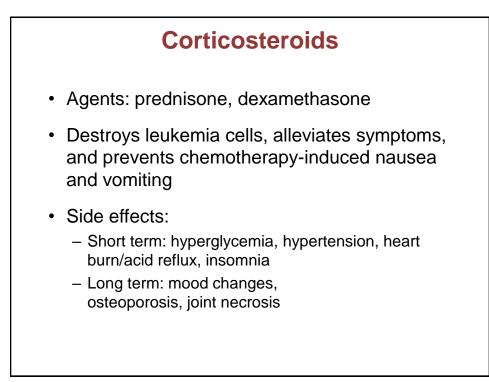

Comparison of Standard Adult Ph- ALL Regimens

Table 3. Acute Lymphoblast	ic Leukemia Induction Regim	nens

Regimen	Induction	Consolidation	Maintenance	CR Rate, %	5-Year DFS Rate, %
LALA-94; Thomas & Fiere 2008 ⁵¹	P, V, C, D, or Ida	Ara-C, MTZ, or C, Ara-C, 6-MP based on risk	HSCT or MTX/6-MP or additional chemotherapy based on risk	84	30
Hyper-CVAD; Kantarjian 2004 ⁴⁰	Hyper C, V, A, and D alternating with MD MTX and Ara-C × 8 cycles	See induction	Allo HSCT or 6-MP, V, MTX, P	92	38
UCSF 8707; Linker 2002 ⁵²	P, V, D, and L-Asp	V, P, D, A, Ara-C, VM-26, MTX	6-MP, MTX	93	52
GMALL 05/93; Gokbuget & Hoelzer 2009 ⁴⁹	Induction 1: P, V, D, MTX, L-Asp; Induction 2: C, Ara-C, 6-MP	HD Ara-C, MTZ, HD MTX, L-Asp, 6-MP	6-MP, MTX	83	35-40
CALGB 8811; Larson 1995 ⁴⁸	P, V, C, D, L-Asp	C, subq Ara-C, 6-MP, V, L-Asp	6-MP, MTX	85	39 (Ages 30-59 y); 69% (aged <30 y) ^a

Faderl et al, Cancer 2010.

HyperCVAD Schema															
AB	A	.		3		A	1		В		Α		В		
A (Odd Cycles): 1, 3, 5, 7	A (Odd Cycles): 1, 3, 5, 7														
Chemotherapy Agent	Day 1	2	3	4	5	6	7	8	9	10	11	12	13	14	21 or 28
Cyclophosphamide IV	хх	xx	xx												
Vincristine IV				х							х				
Doxorubicin IV				Х											
Dexamethasone PO or IV	х	x	х	х							х	х	х	х	
Intrathecal (IT) chemotherapy during lumbar puncture		x													
Filgrastim daily SQ injection (alternative: pegfilgrastim x1)					x	x	x	x	x	x	x	x	x	x	x
B (Even Cycles): 2, 4, 6, 8															
Chemotherapy Agent	Day 1	2	3	4	5	6	7	8	9	10	11	12	13	14	21 or 28
Methotrexate IV	х														
Cytarabine IV		xx	xx												
Intrathecal (IT) chemotherapy during lumbar puncture		x													
Filgrastim daily SQ injection (alternative: pegfilgrastim x1)					x	x	x	x	x	x	x	x	x	x	x

Vincristine Mechanism of action: - Binds to tubulin and inhibits microtubule and mitotic spindle formation; causes cell cycle arrest between M and S phases • Dosing and Administration: - Weight based (1.4-1.5 mg/m2) or flat dose 2 mg IV infusion over 5-10 minutes (number of doses depend on protocol) - Should NEVER be given intrathecally (can cause paralysis and death) - Avoid administration on the same day/time as other intrathecal medications Drug interactions: • - Major CYP3A4 substrate: Avoid administration of strong or moderate CYP3A4 inhibitors or inducers Toxicities: - Gastrointestinal (constipation, paralytic ileus, intestinal perforation) - Neurotoxicity, peripheral neuropathy - Extravasation Loss of appetite/weight loss Vincristine sulfate [package insert]. Lake Forest, IL: Hospira Inc; March 2013. 53

Vincristine Neurotoxicity								
 Neuropathies are a common occurrence with vinca-alkaloid therapy Dose-dependent and dose-limiting with vincristine Most protocols cap dose at 2 mg May require dose reductions or discontinuation for severe toxicities Use caution in patients with pre-existing neuromuscular disease and/or with concomitant neurotoxic agents 								
 Sensory: paresthesia, numbness, impaired touch sensitivity or temperature recognition, neuropathic pain, jaw pain Peripheral neuropathy can also be treated with other medications (e.g. gabapentin, pregabalin, duloxetine) 								
 Motor: extremity weakness, walking difficulties, impaired balance, deteriorated reflexes and fine motor abilities, muscle cramps 								
 Autonomic: constipation, paralytic ileus, incontinence, urinary retention, orthostatic hypotension Constipation caused by hypomotility of gut and injury of myenteric neurons in colon All patients should be given a prophylactic bowel regimen (e.g. polyethylene glycol, senna) and stay well hydrated Avoid other constipating medications when possible For persistent constipation, other laxatives and rarely enemas are used 								

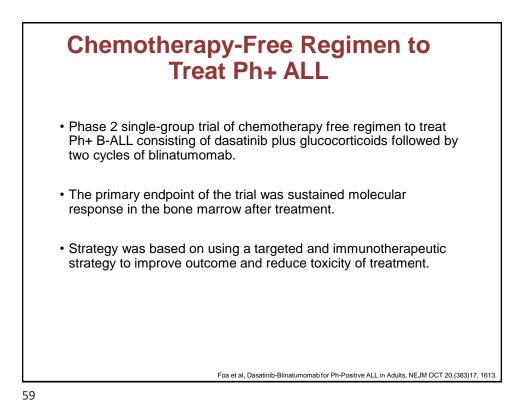
Daunorubicin & Doxorubicin

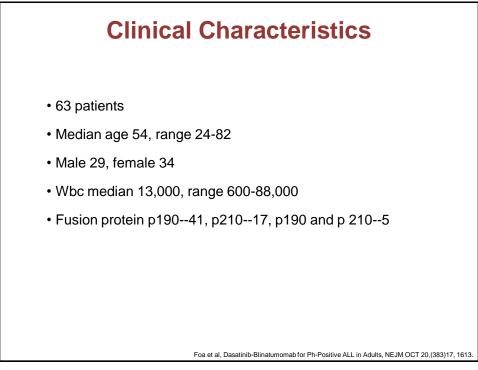
- Mechanism of action:
 - Anthracyclines that inhibit DNA replication and induce DNA strand breakage through several mechanisms including intercalation of DNA strands, inhibition of DNA polymerase, and topoisomerase II inhibition
- Dosing / Administration:
 - IV push over < 15 minutes or IV infusion over 15-30 minutes
- · Common toxicities:
 - Myelosuppression
 - Gastrointestinal (nausea, vomiting, diarrhea, mucositis)
 - Extravasation
 - Red/orange discoloration of body fluids
 - Alopecia
 - Cardiotoxicity

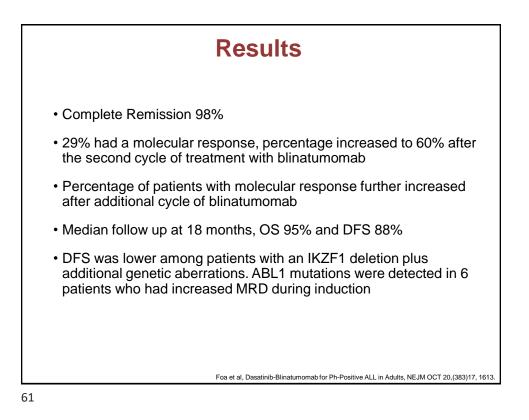
Daunorubicin [package insert]. Bedford, OH: Bedford Laboratories; June 2013. Idarubicin [package insert]. Schaumburg, IL: APP Pharmaceuticals, LLC; December 2008.

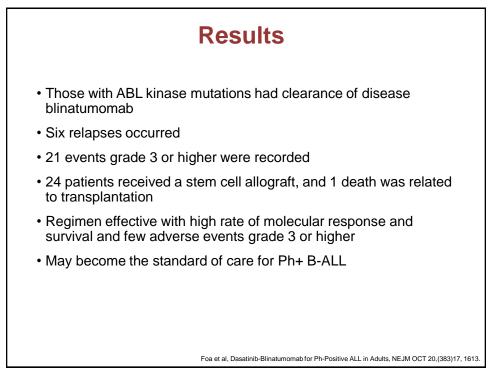
Anthracycline Cardiotoxicity									
in cardiomyocy – Risk factors: c	rtes; can be acute (umulative anthracycline	s formation and targetir rare) or chronic (more of dose, history of cardiovascula moking, hypertension, diabete	r (CV) disease, reduced						
administration	to confirm adequate	ardiogram prior to anth e left ventricular heart fu or those with ≥10-15% drop	unction (LVEF)						
Cumulative liContinuous c	fetime anthracycline more that any fetime anthracycline more more anthracycline more more and the fetime and th	0							
	Drug	Maximum Lifetime Dose							
	Daunorubicin	550 mg/m ²							
	Doxorubicin	450-550 mg/m ²							
	Epirubicin	900 mg/m ²							
	Idarubicin 150 mg/m ²								
	Mitoxantrone 140 mg/m ²								
		kicity: Prevalence, Pathogenesis, and Trearding to the second stress of the second stress	atment. Curr Cardiol Rev. 2011;7(4):214-20.						

BCR-ABL1 Tyrosine Kinase Inhibitors

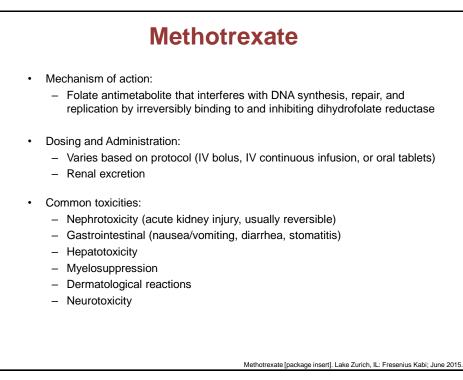

	Imatinib (Gleevec®)	Dasatinib (Sprycel®)	Nilotinib (Tasigna®)	Ponatinib (Iclusig®)
Generation	1 st	2 nd	2 nd	3 rd
Dosing	400 mg once daily	100 mg once daily	400 mg twice daily	30-45 mg once daily
Strength	100 & 400 mg tablets	20, 50, 70, 80, 100, & 140 mg tablets	50, 150, & 200 mg capsules	10, 15, 30, & 45 mg tablets
Administration	With or without food	With or without food	Empty stomach (-2/+1 hours)	With or without food
Side effects	Fluid retention Pleural or pericardial effusions Glupset Muscle cramps Rash	Fluid retention Pleural or pericardial effusions Myelosuppression Gl upset Rash Rare: pulmonary arterial hypertension	Qtc prolongation Hepatotoxicity Hyperglycemia Pancreatitis Myelosuppression Rash Rare: peripheral arterial occlusive disease	Arterial occlusive events or venous thromboembolic events Hepatotoxicity Pancreatitis Rash Hypertension Fluid retention Cardiac arrhythmias Hemorrhage Rare: heart failure

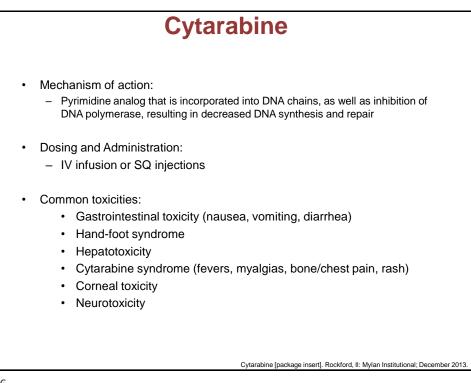

57

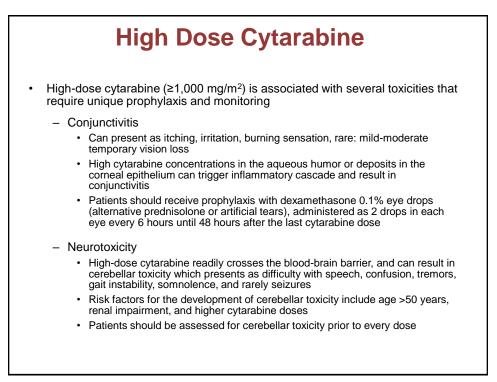

BCR-ABL1 Tyrosine Kinase Inhibitors Drug Interactions


• Review all prescription, over-the-counter, herbals, and supplements with the pharmacist to check for drug-interactions!

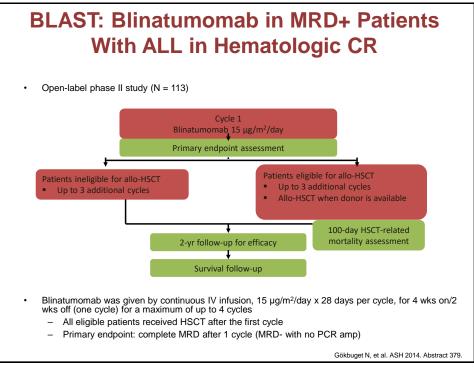
Medication	Imatinib (Gleevec®)	Dasatinib (Sprycel®)	Nilotinib (Tasigna®)	Ponatinib (Iclusig®)
Proton Pump Inhibitors (PPI) [e.g. pantoprazole, omeprazole]	\sim	×	×	\sim
Histamine 2 Receptor Antagonists (H2RAs) [e.g. famotidine, ranitidine]	\sim	Take once daily 2 hours AFTER TKI	Take once daily 2 hours AFTER TKI	\sim
Antacids	\sim	Take +/- 2 hours from TKI	Take +/- 2 hours from TKI	\sim
Fluoxetine, bupropion, citalopram	Qtc monitoring	Qtc monitoring	×	Qtc monitoring
Amiodarone, diltiazem, verapamil	Consider alternative	Consider alternative	×	Consider alternative
Azole antifungals [e.g. fluconazole, voriconazole, posaconazole]	Monitor, dose adjust, or consider alternative	Monitor, dose adjust, or consider alternative	Monitor, dose adjust, or consider alternative	Monitor, dose adjust, or consider alternative
Fluoroquinolones	\sim	Qtc monitoring	Use with caution	\sim

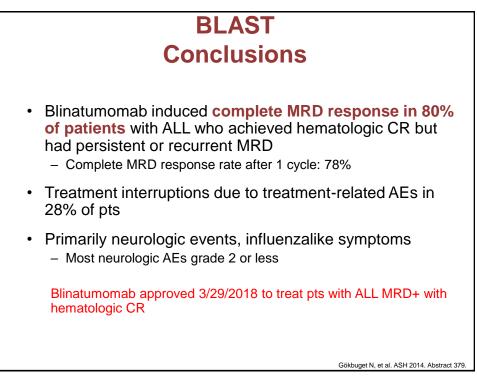


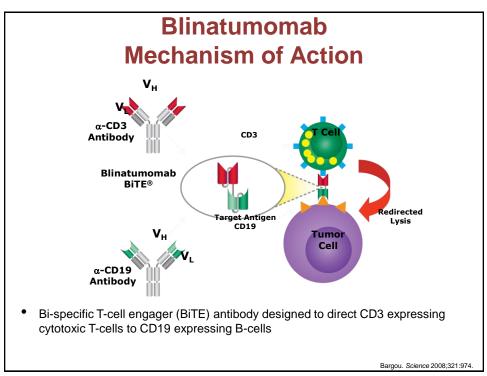

CONSOLIDATION

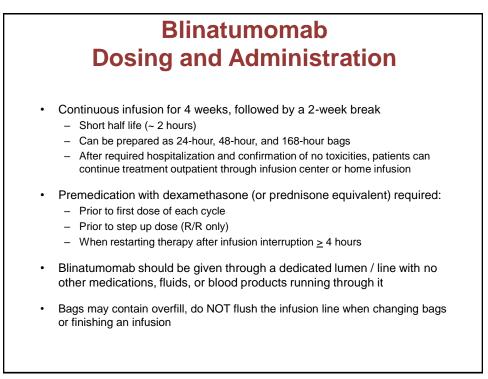


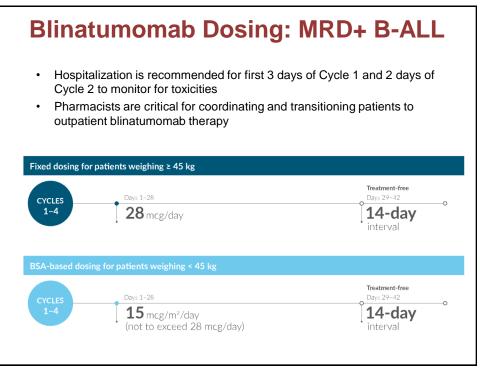
High Dose Methotrexate (HD-MTX)

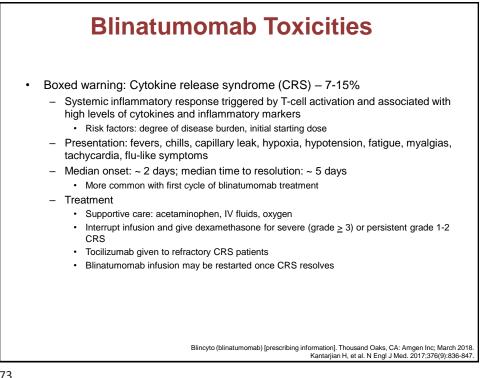

 Delayed clearance of HD-MTX (≥1,000 mg/m²) is associated with several toxicities including acute nephrotoxicity, hepatotoxicity, and neurotoxicity

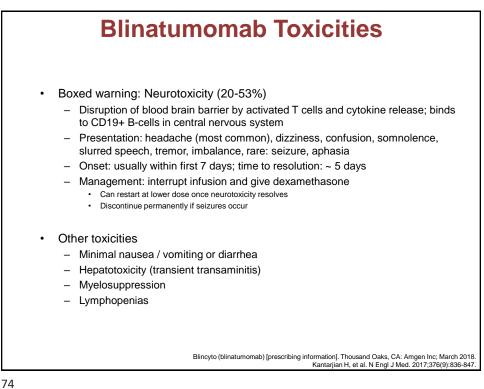

- Strategies to efficiently clear HD-MTX and reduce the risk of toxicity should be employed
 - Temporarily stop medications that interact with HD-MTX
 - Sulfa drugs (trimethoprim/sulfamethoxazole)
 - · Proton pump inhibitors (pantoprazole, omeprazole, esomeprazole)
 - · Penicillins (piperacillin/tazobactam, amoxicillin, ampicillin)
 - NSAIDs (aspirin, naproxen)
 - · Others: Vitamin C, probenecid, tetracyclines
 - Hydration and urine alkalinization with continuous IV sodium bicarbonate + D5W
 - Increases HD-MTX solubility and reduces crystal formation
 - Maintain urine output > 100 ml/hr and urine pH > 7
 - · May also receive oral sodium bicarbonate and/or acetazolamide
 - Therapeutic drug monitoring
 - Antidote (marked delayed HD-MTX clearance + impaired renal function): glucarpidase
 - Administer leucovorin 24-36 hours after starting HD-MTX, and continue until methotrexate is cleared from the blood
 - Doses > 25 mg should be given IV for better absorption

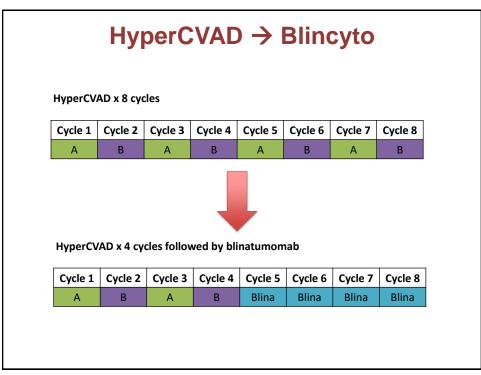


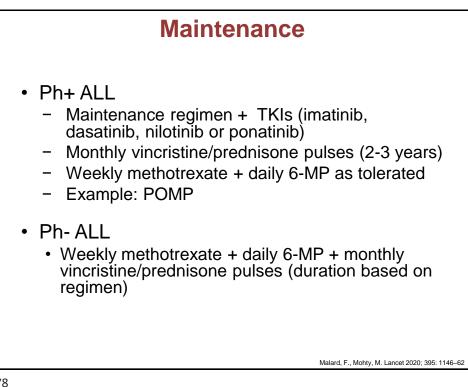


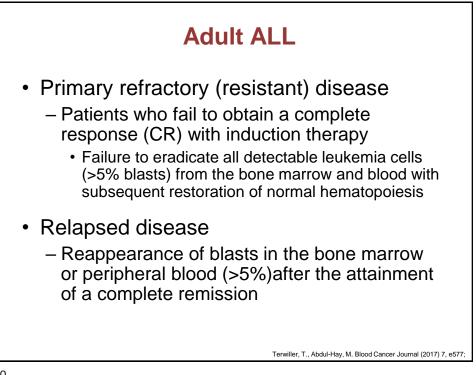


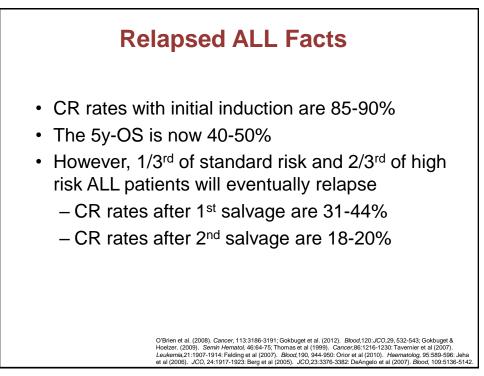


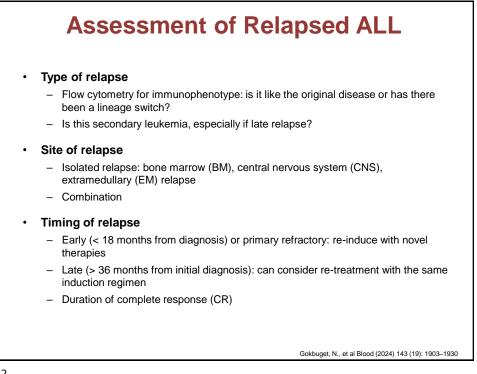




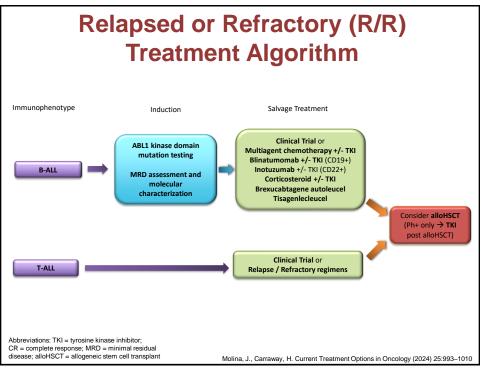


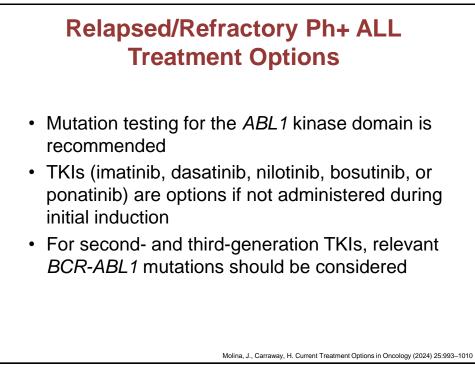

HyperCVAD Schema															
A B	A		E	3		A	1		В		Α		В		
A (Odd Cycles): 1, 3, 5, 7															
Chemotherapy Agent	Day 1	2	3	4	5	6	7	8	9	10	11	12	13	14	21 or 28
Cyclophosphamide IV	xx	xx	xx												
Vincristine IV				х							х				
Doxorubicin IV				х											
Dexamethasone PO or IV	х	х	х	х							х	х	х	х	
Intrathecal (IT) chemotherapy during lumbar puncture		x													
Filgrastim daily SQ injection (alternative: pegfilgrastim x1)					x	x	x	x	x	x	x	x	x	x	x
B (Even Cycles): 2, 4, 6, 8															
Chemotherapy Agent	Day 1	2	3	4	5	6	7	8	9	10	11	12	13	14	21 or 28
Methotrexate IV	х														
Cytarabine IV		xx	xx												
Intrathecal (IT) chemotherapy during lumbar puncture		x													
Filgrastim daily SQ injection (alternative: pegfilgrastim x1)					x	x	x	x	x	x	x	x	x	x	x

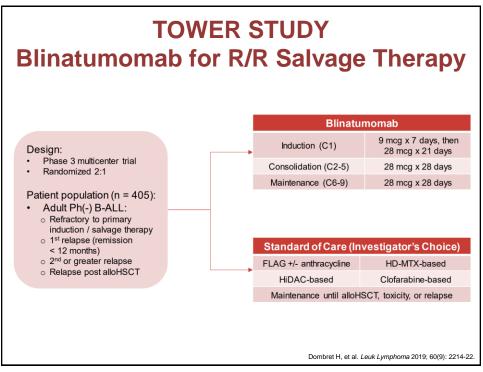


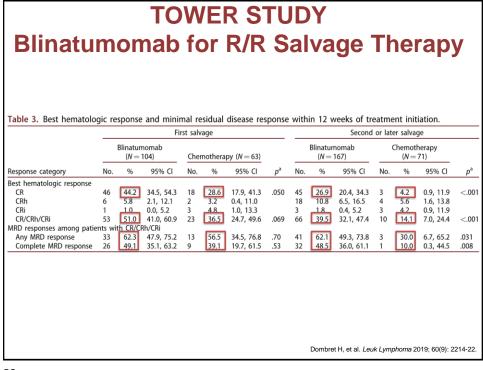

MAINTENANCE

PRINCIPLES OF ADULT ALL THERAPY: RELAPSED OR REFRACTORY ALL

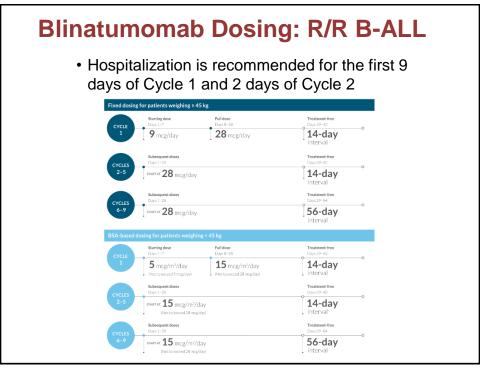


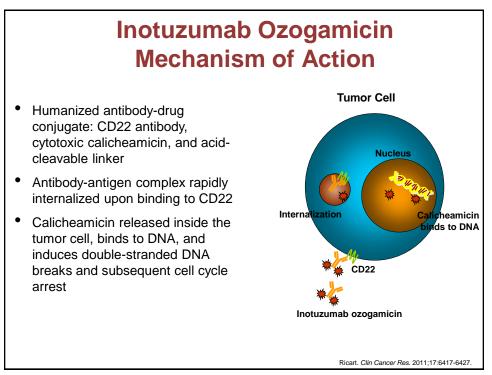


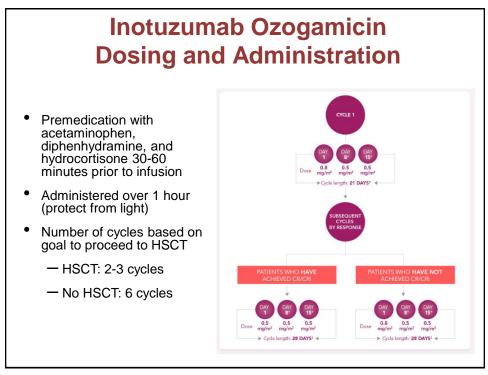

Relapsed/Refractory (R/R) ALL Treatment


- Treatment decisions affected by:
 - Age / performance status / comorbidities
 - Initial induction treatment
 - Immunophenotype and Ph status
 - Duration of CR / time from initial diagnosis to relapse
- Treatment is challenging because these patients have very poor prognosis
- There are no established preferred standard of care for salvage therapies, but HSCT is the only potential curative modality
- After CR2 with a salvage regimen, allogeneic HSCT should be considered as soon as possible. The role of allogeneic HSCT following cellular therapy unclear
- For patients that relapse after an initial allogeneic HSCT, other options may include a second allogeneic HSCT and/or donor lymphocyte infusion.

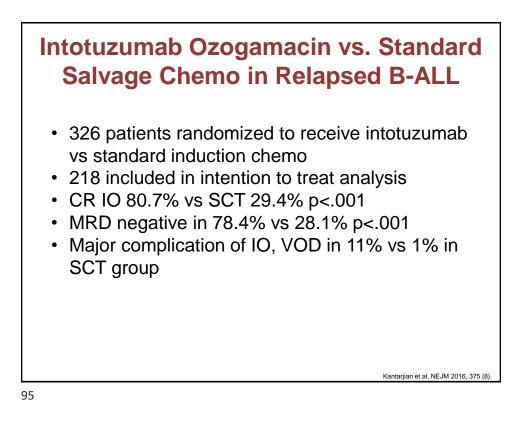
DuVall, A., et al, JCO Oncology Practice, Vol 18; 7

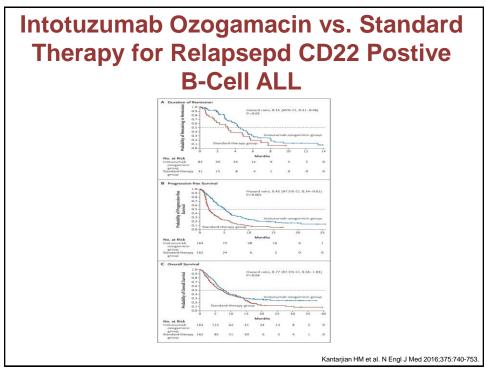






TOWER STUDY Blinatumomab for R/R Salvage Therapy 0.8 Median OS 0.6 1st salvage: 11.1 vs 5.5 months 0.4 0.2 (HR 0.59, 0.38-0.91) 0.0 2nd or later salvage: 5.1 vs 3 months (HR 0.72, 0.52-1.01) Similar results after censoring for allogeneic HSCT 8.0 EFS @ 6 months: 41% vs 26% 0.6 0.4 0.2 Dombret H, et al. Leuk Lymphoma 2019; 60(9): 2214-22

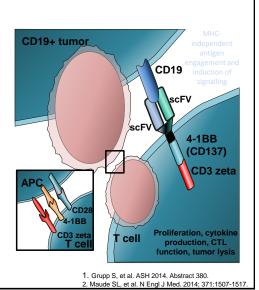


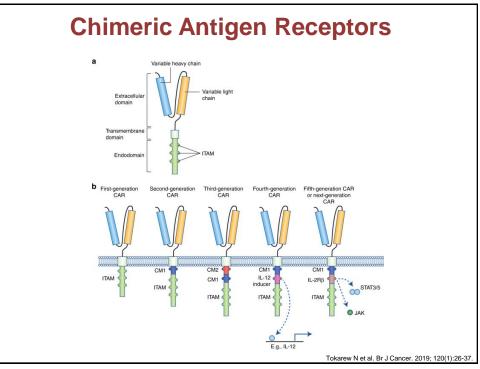


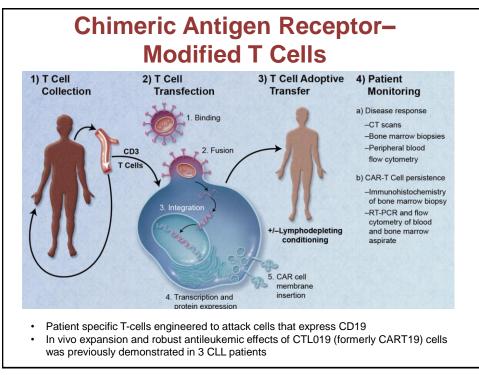
Inotuzumab Ozogamicin Toxicities

- · Boxed warning: Hepatoxicity
 - Severe, life-threatening, and sometimes fatal sinusoidal obstructive syndrome (SOS)/veno-occlusive disease (VOD) has been seen
 - Risk factors:
 - Greatest risk in patients who received HSCT after inotuzumab ozogamicin treatment
 - 2 alkylating agents, high total bilirubin at baseline, history of VOD/SOS, liver disease
 - Median time to onset:15 days (range: 3-57 days)
 - Prevention:
 - Some providers may start ursodiol
 - · Minimize number of cycles to 2 before proceeding to HSCT
- · Other toxicities:
 - Infusion reactions
 - QTc prolongation
 - Myelosuppression
 - Nausea, vomiting, constipation, abdominal pain
 - Headache or fatigue
 - Infection

Besponsa (inotuzumab ozogamicin) [prescribing information]. Philadelphia, PA: Wyeth Pharmaceuticals Inc; March 2018. Kantarjian HM, et al. NEJM. 2016;375:740-753.

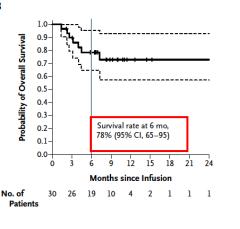

IO Relapsed/Refractory ALL Response							
Monthly, N=49 No. (%)	Weekly, N=40 No. (%)						
9 (18)	7 (18)						
14 (29)	12 (30)						
5 (10)	4 (10)						
19 (39)	15 (38)						
2 (4)	2 (5)						
28 (57)	23 (58)						
	Monthly, N=49 No. (%) 9 (18) 14 (29) 5 (10) 19 (39) 2 (4)						

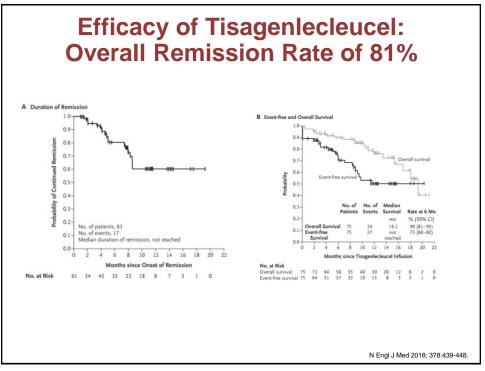

IO in Relapsed/Refractory ALL Minimal Residual Disease


Parameter	Monthly, N=27 MRD Negative No. (%)	Weekly, N=20 MRD Negative No. (%)
CR	8/9 (89)	6/7 (86)
CRp	9/14 (64)	7/10 (70)
CRi (marrow CR)	0/4 (0)	1/3 (33)
MRD negative	17/27 (63)	14/20 (70)
		Kantarjian H, et al. Cancer. 2013;119:2728-36.

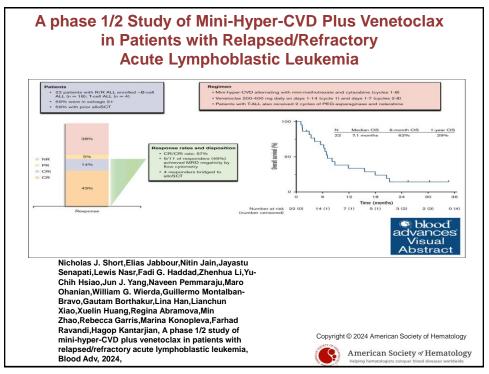
Chimeric Antigen Receptors MOA

- Genetically engineered receptors that combine anti-CD19 single chain variable fragment of an antibody with intracellular signaling domains of T cells
- With the use of lentiviral-vector technology, CTL019 T cells express a CAR with CD3 zeta and 4-1BB (CD137) signaling domains
- Tisagenlecleucel is approved for patients up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse
- Brexucabtagene Autoleucel is approved for the treatment of adult patients with relapsed or refractory B-cell precursor ALL




CAR T-cells (CTL019) Lead to Sustained **Remissions in ALL Patients** Median $f/u = 7 \mod 7$ Range: 2-24 mos 30 pts with relapsed/refractory В ALL with 2 years of follow-up 1.0 0.9 **Characteristics** 0.8 - Ages 5-60 yrs old 0.7 -18 (60%) had prior alloHSCT 0.6 -3 (10%) had refractory ALL 0.5 -22 (73%) had \geq 2 relapses 0.4

Responses


27 pts (90%) achieved CR one month after T-cell infusion 2 of 3 prior blinatumomab Rxed pts responded

Maude et al NEJM 2014; 371: 1507-1517.

Table 3. Adverse Events of Special Int Regardless of Relationship to Tisager		Weeks after In	ifusion,
Type of Event	Any Grade (N=75)	Grade 3 (N = 75)	Grade 4 (N = 75
	number	of patients (pe	ercent)
Any adverse event of special interest	67 (89)	26 (35)	30 (40)
Cytokine release syndrome	58 (77)	16 (21)	19 (25)
Neurologic event	30 (40)	10 (13)	0
Infection	32 (43)	16 (21)	2 (3)
Febrile neutropenia	26 (35)	24 (32)	2 (3)
Cytopenia not resolved by day 28	28 (37)	12 (16)	12 (16)
Tumor lysis syndrome	3 (4)	3 (4)	0

Zuma-3: Brexucabtagene Autoleucel (KTE-X19) for R/R B-ALL

- Phase 2 single arm open label multicenter international study (n = 55 patients)
 - Median age: 40 years (28-52)
 - 47% received > 3 previous therapies
 - 42% received previous allogeneic HSCT

Results

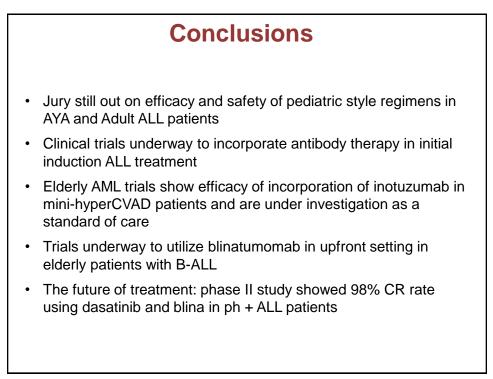
- Complete remission: 71%
- MRD negativity: 76%
- Median duration of remission: 14.6 months
- Median time to allogeneic HSCT: 98 days
- Median OS: 18.2 months (15.9-not estimable) in all treated patients and not reached in responders

Zuma-3: Brexucabtagene Autoleucel (KTE-X19) for R/R B-ALL

· Safety data:

■ 95% of patients experienced at least 1 Grade ≥ 3 adverse event

	Any Grade	Grade <u>></u> 3
CRS (Median onset: 5 days)	89%	24%
Neurological Events (Median onset: 9 days)	60%	26%
Anemia	53%	49%
Neutropenia	27%	27%
Thrombocytopenia	33%	30%
Alanine aminotransferase increased	22%	15%

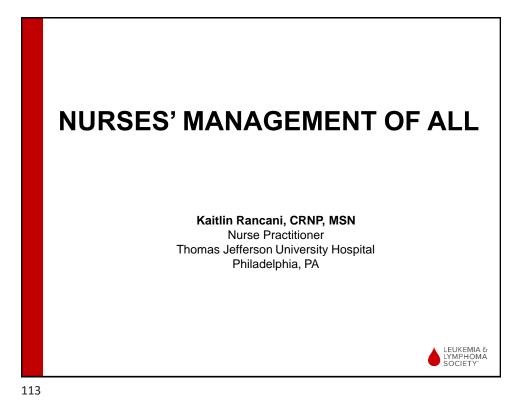

107

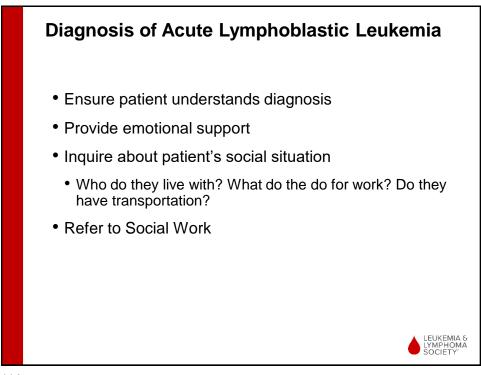
Cytokine Release Syndrome (CRS) Treatment Algorithm

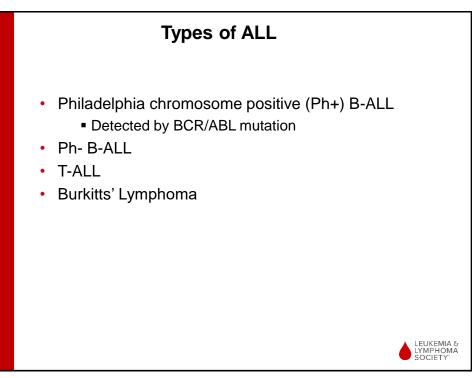
Grade	Fever (<u>></u> 38°C)	Hypotension (SBP < 90 mmHg)	Hypoxia (requires oxygen for O2 sat > 90%	Management
1	Yes	No	No	Monitor fluid status Empiric treatment for febrile neutropenia & sepsis screen Supportive care (antipyretics, analgesics) Consider tocilizumab in absence of improvement within 3 days
2	Yes	Yes - does not require vasopressors	Requires low-flow nasal cannula	Closely monitor all organ function Supportive care (fluids, antipyretics) If older/considerable comorbidities: tocilizumab +/- corticosteroids
3	Yes	Yes – requires vasopressor +/- vasopressin	Requires high flow nasal cannula, facemask, or nonrebreather)	Tocilizumab +/- corticosteroids Supportive care
4	Yes	Yes – requires multiple vasopressors	Requires positive pressure (CPAP, BiPAP, intubation, mechanical ventilation)	Tocilizumab +/- corticosteroids Supportive care

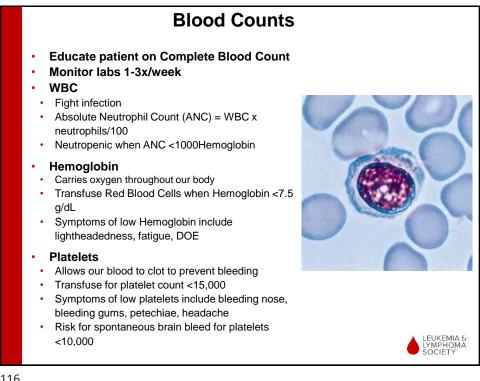
Neurotoxicity Treatment Algorithm

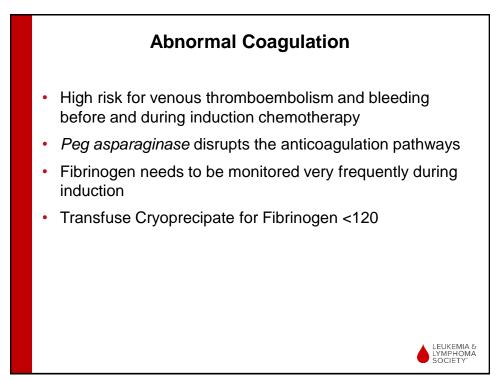
ICANS Grade	ICE Score	Depressed level of consciousness	Seizure	Motor Findings	Elevated ICP / cerebral edema	Manageme Without CRS	ent With CRS
Grade 1	7-9	Awakens spontaneously	N/A	N/A	N/A	Supportive care	Tocilizumab
Grade 2	3-6	Awakens to voice	N/A	N/A	N/A	Supportive care Dexamethasone IV x 1 and reassess, repeat every 6-12 hours if no improvement	Tocilizumab +/- dexa methasone
Grade 3	0-2	Awakens only to tactile stimuli	Any clinical seizure that resolves rapidly or nonconvulsive seizures on EEG that resolve with intervention	N/A	Focal/local edema on neuroimaging	Dexamethasone IV q6h or methylpred- nisolone then taper ICU care Consider repeat neuroimaging every 2-3 days	Tocilizumab dexameth- asone
Grade 4	0 (un- arousable or unable to perform)	Unarousable or requires vigorous / repetitive tactile stimuli Stupor or coma	Life-threatening prolonged seizure (>5 min) or repetitive clinical or electrical seizures without return to baseline in between	Deep focal motor weakness (e.g. hemiparesis or paraparesis)	Diffuse cerebral edema on neuroimaging Decerebrate or decorticate posturing Cranial nerve VI palsy Papilledema Cushing's triad	High dose IV methylprednisolone every 12-24 hours x 3 days, then taper ICU care, consider mechanical ventilation Consider repeat neuroimaging every 2-3 days Treat convulsive seizures per protocol	Tocilizumab methylpred nisolone

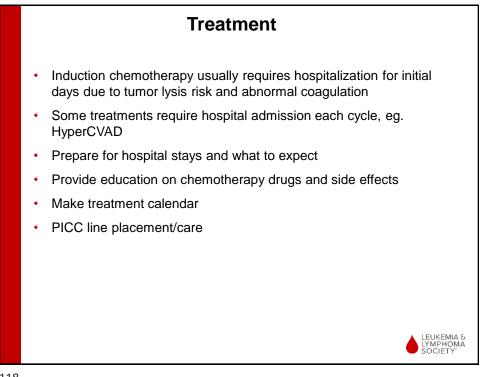


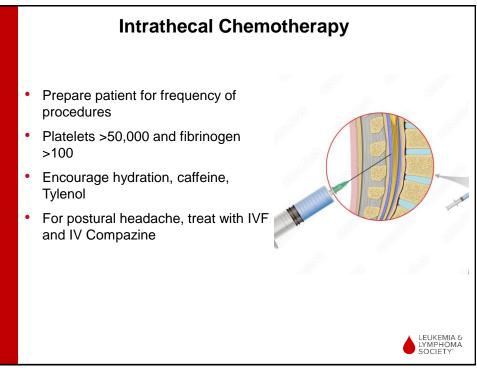

Conclusions

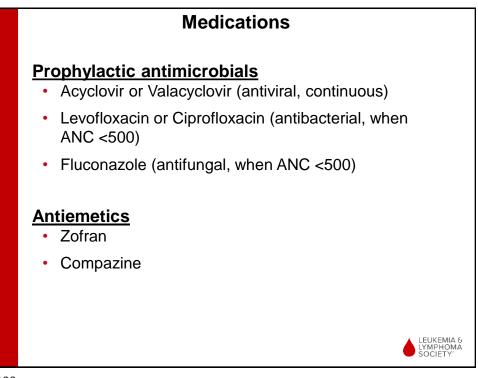

- New agents such as venetoclax and navitoclax also show efficacy in ALL pts and are under investigation in the relapsed/refractory setting
- CAR-T is expensive and difficult to offer to broad population of patients. Many challenges remain in cost of therapy and insurance coverage
- Cellectis "off the shelf" CD 19 CAR-T may show promise in making this therapy more available
- Combinations of these new agents amongst themselves or with chemotherapy will be the next generation of treatment options for patients with ALL

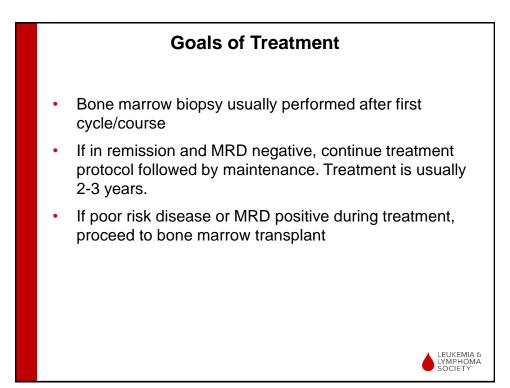

111

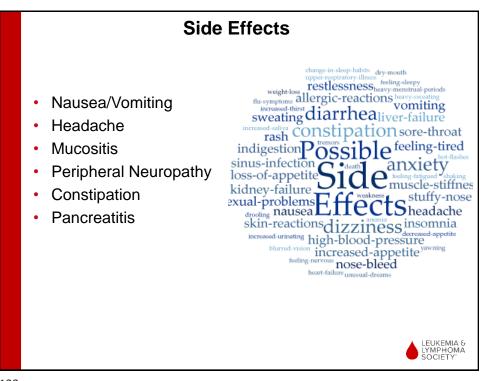

 For additional information review the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) – <u>www.NCCN.org</u>.

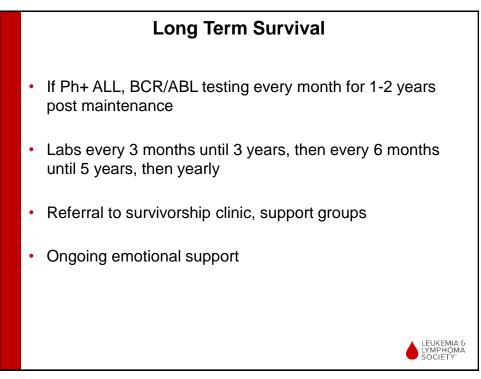


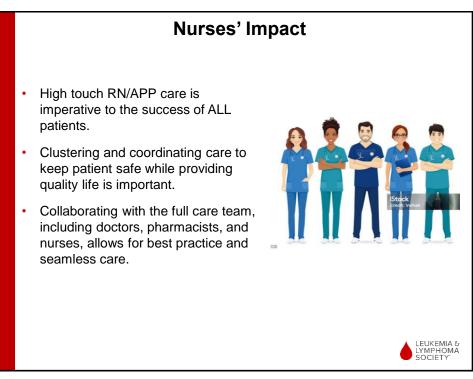


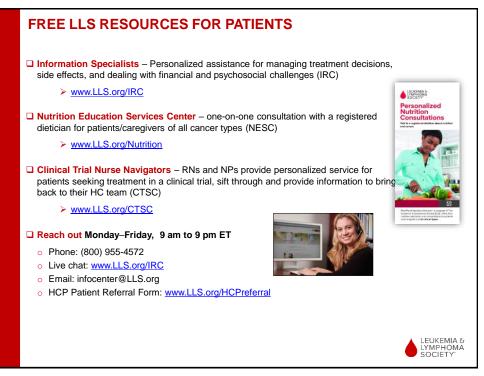


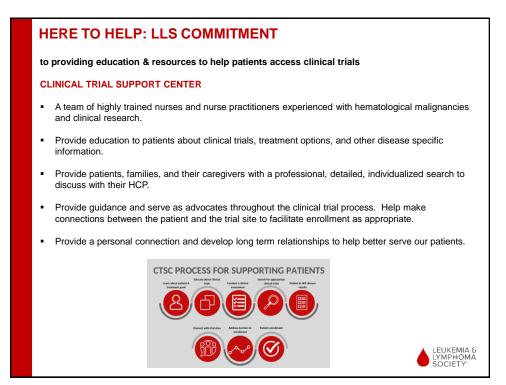











<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

